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The nonlinear Boltzmann equation has been solved for shock waves in a gas of 
elastic spheres. The solutions were made possible by the use of Nordsieck’s 
Monte Carlo method of evaluation of the collision integral in the equation. 
Accurate solutions were obtained by the same numerical procedure for eight 
values of the upstream Mach numbers Hl ranging from 1.1 to 10, even though 
the corresponding degree of departure from equilibrium varies by a factor 
greater than 100. Many more characteristics of the internal structure of the shock 
waves have been calculated from the solutions than have hitherto been avail- 
able. Each solution of the Boltzmann equation requires about 108 multiplications 
to obtain statistical errors of 3 % in values of the velocity distribution function 
and collision integral and much smaller errors in the moments of these functions. 

The reciprocal shock thickness is in agreement with that of the Mott-Smith 
shock (u2 moment) from M.. = 2.5-8. The density profile is asymmetric with 
an upstream relaxation rate (measured as density change per mean free path) 
approximately twice as large as the downstream value for weak shocks and 
equal to the downstream value for strong shocks. The temperature density rela- 
tion is in agreement with that of the Navier-Stokes shocks for Mach numbers in 
the range 1.1-1-56. The Boltzmann reciprocal shock thickness is smaller than 
the Navier-Stokes value in this range of Mach number because the viscosity- 
temperature relation computed is not constant as predicted by the linearized 
theory. 

The velocity moments of the distribution function are, like the Mott-Smith 
shock, approximately linear with respect to the number density; however, the 
deviations from linearity are statistically significant. Four functionals of the 
distribution function that are discussed show maxima within the shock. The 
entropy is a good approximation to the Boltzmann function for all Hl. The 
solutions obtained satisfy the Boltzmann theorem for all Mach numbers. The 
ratio of total heat flux q to qz (that associated with the longitudinal degree of 
freedom) correlates well with local Mach number for all Ml in accordance with a 
relation derived by Baganoff & Nathenson (1970). The Chapman-Enskog 
linearized theory predicts that this ratio is constant. The (effective) transport 
coefficients are larger than the Chapman-Enskog equivalents by as much as a 
factor of three at the mid-shock position. 

At Ml = 4, and for 40% of the velocity bins, the distribution function is different 
from the corresponding Mott-Smith value by more than three times the 90% 
confidence limit. The r.m.8. value of the percentage difference in distribution 
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functions is 15 % for this Mach number. At MI = 1-59, the half width and several 
other characteristics of the function 

j f  dv, dvs 

differ from that of the Chapman-Enskog first iterate, and many of the devia- 
tions are in agreement with an experiment by Muntz & Harnett (1970). 

1. Introduction 
A shock wave is a commonly occurring, well-defined, non-equilibrium pheno- 

menon in gasdynemics. It is therefore desirable to be able to determine any of 
its properties that are currently of physical interest and to be able to determine 
others as they are needed in the future. Unfortunately, experiment yields only 
a few properties of shock waves and, until recently, calculations of the structure 
of strong shocks have been based upon assumptions whose validity has not been 
established. 

Nordsieck's development, more than a decade ago, of an accurate Monte Carlo 
method of evaluation of the collision integral in the nonlinear Boltzmann equa- 
tion radically altered this situation, both for shock wave calculations and for 
other problems in rarefied gasdynamics. No longer is it  necessary to assume 
near-equilibrium or nearly free-molecule flow, nor to assume the validity of 
equations substituted for the full nonlinear Boltzmann equation. Nordsieck's 
evaluation of the collision term (gain and loss terms separately) makes possible 
direct solutiont of this basic equation, a possibility that has been largely ignored 
in the century since the equation was derived by Boltzmann. 

Nordsieck's method was developed in 1958 and was first described in the 
literature in 1967 (Nordsieck & Hicks 1967). Brief accounts of the application 
of the method to strong shock waves have appeared there and in the Proceedings 
of the Sixth RareJied Gas Dynamics Symposium (Hicks & Yen 1969). Applications 
to other problems have also been made (Hicks 1965; Yen & Hicks 1967a, b;  
Yen 1971; Yen & Schmidt 1969). Part of an extensive analysis of the systematic 
and random errors of the method and its applications was published in Hicks Q 
Smith (1 968). More recent analyses of the errors and improvements of the method 
have been described in a report (Hicks, Yen & Reilly 1969). 

Using Monte Carlo evaluation of the nonlinear collision integrals, during the 
period 1967-70 we solved the nonlinear Boltzmann equation for shock waves 
in a gas of elastic spheres. We used the same numerical methods for eight Mach 

t By solution of the Boltzmann equation we mean calculation and line-printer output 
of (i) accurate numerical values of the velocity distribution function f(v,e) for each of 
226 cells in velocity space and for each of 9-17 positions in the shock wave, and (ii) estimates 
of the probable (statistical) error of each of these values off (v, z), of each of the corresponding 
values of the gain and loss terms in tha collision integral a - bf and of each of some 100 func- 
tions derived fromf, a and bf. These functious include all the functions that are often re- 
garded as ' solutions' of the Boltzmaun equation. By the adjective accurate we imply that 
the probable errors in f (v, 2) are about 3 yo on the average. These matters have been dis- 
cussed in some detail in Hicks & Smith (1967, 1968) and Hicks et al. (1969). 
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numbers in the range 1-1-10. In  the present paper we describe selected results 
from these calculations. 

There are several reasons for publishing only selected results of these shock 
wave calculations, the most obvious being the large volume of results, larger 
than it is possible to print in a journal. Furthermore, no definitive comparisons 
with experimental results are possible until a new theory that predicts the 
effects upon the collision integral of changing the intermolecular forces is de- 
veloped or until differential cross-sections for realistic, slightly ‘ soft ’ molecular 
fields are known. It is also impossible to predict exactly which detailed computed 
properties of shock structure will be needed in the future to compare with other 
calculations and with experiment. However, using our basic Boltzmann program, 
which solves the Boltzmann equation accurately, and the AVERR program, 
which gives detailed information about moments and functions derived from 
them, we can relatively easily calculate the specific details of shock structure 
when they are needed. 

For these reasons we have chosen to describe here those characteristics of 
shock waves having the greatest physical interest at  present. These charac- 
teristics are named in the section headings. With one exception ( 3  2) we discuss 
first those characteristics which are most commonly treated in gasdynamics, 
namely, shock thickness and density gradients. We then discuss progressively 
less familiar characteristics: thermodynamic properties, gradients of temperature 
and of the Boltzmann flux, transport properties (including two components of 
heat flux), the distribution function and the collision integral itself. 

It is useful to preface our discussion of these characteristics with general 
remarks on our methods. For a number of reasons (see Hicks & Smith 1967) 
we find it desirable to use the local particle density n as the independent variable 
rather than x, the position co-ordinate. Except in Q 3, then, we consider variations 
of the different shock properties as functions of n rather than of x. We often use 
dimensionless variables like rZ = (n - n,)/(n2 - n,). 

The solutions we discuss are iterative solutions of the Boltzmann diflerence 
equation, which we have reason to believe approximate well the solutions of the 
diflerential equation (Hicks & Smith 1967,1968). The difference equation is solved 
by embedding Nordsieck’s Monte Carlo method of evaluating the collision integral 
in an iterative scheme for finding velocity distribution functions (everywhere in 
the shock wave and at all positions in velocity space) which produces two sides of 
the Boltzmannequationthat are equal within about 1 %.We have studied the con- 
vergence of the iterative scheme and made strong uniqueness tests of our solutions. 
The results of weaker tests have already been published (Hicks & Smith 1968). 

The units used are the values, denoted by the subscript 1, of various properties 
of the upstream gas. Thus n1 and t ,  are the units of number density n and 
temperature t ,  the unit of length 1, = 1/(2n12,~+) = (mean free path),/,/2 and the 
unit velocity c1 = (2nkt1/m)4 = (mean speed), x in. The unit of time is therefore 
(mean free time), x (2144 and the unit of the velocity distribution function is 
nl/c!. In these units the Boltzmann equation for the shock wave is 

~ ~ a f l a ~  = a-b f=  (E%’-ff’) Ik.v,l dv‘(dk/an), s 
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where f = f(v, x) is the velocity distribution function, x is the distance in the 
direction perpendicular to the shock, the unit vector k gives the direction of the 
line of centres during a collision, v, = v' - v and f, f ', F and F' denote the four 
values off corresponding to the four velocities v, v', V and V'. Integration is over 
the whole 4n solid angle in order that the k integration limits may be independent 
of v and v'. The term bf reminds us that this second part of the collision integral 
is proportional to f(v,x), a fact of importance in devising a stable method of 
integrating the differential equation. 

In  all calculations we used 226 bins in the ( v ~ ,  vl) velocity space, where v, and 
vL are components in cylindrical co-ordinates. For this subdivision of velocity 
space it is possible to make meaningful calculations up to a Mach number 
M, = 10 but not much higher. We used the LS and the MB corrections and the 
'single sample' technique (Hicks et al. 1969) throughout the calculations in the 
entire HI range of 1-1-10. For each MI, runs were made for each of four large 
independent collision samples ( Z13 collisions per sample), yielding estimates of 
the mean value and the statistical error of any quantity derived from either the 
velocity distribution functions or the collision integrals. The r.m.s. probable 
errors of the (mean) velocity distribution function, calculated by our solution 
of the Boltzmann equation, were determined for each Mach number and are 
about 3 yo for a Machnumber of 4. The probable errors in various (mean) moments 
of the velocity distribution and of the collision integral are smaller by factors of 
ten to one hundred. This level of accuracy is obtained on the CDC 1604 digital 
computer (50ps multiplication time) in a run lasting about 2 h for each Mach 
number (equivalent to 1.4 x 108 multiplications). Calculations of each value of 
a or bf,  that is, each value of a fivefold integral, requires only the time for about 
2000 multiplications per iteration. 

The values of the mean and the statistical error of each function derived from 
the velocity distribution function or the collision integral is calculated by the 
AVERR program. This program computes the means and errors of 100 functions 
for each set of four collision samples, for each position in the shock and for each 
value of the Mach number. We discuss seventeen of these functions in later 
sections of the paper. 

The overall method is summarized in figure 1. As shown in this figure, thermo- 
dynamic properties and transport properties of shock waves are calculated from 
the moments of the distribution function, gradients from the moments of the 
collision integrals, and transport coefficients from both types of moments. One 
moment off, namely n, the number density, is taken to be the independent 
variable in most sections of the paper. 

We have tested the accuracy of the Mott-Smith solutions in satisfying the 
Boltzmann equation and have found that our Monte Carlo solutions satisfy the 
Boltzmann equation more accurately by a factor of 100. Since we know the 
magnitudes of the random errors of our solutions we can state unequivocally, 
in the comparison with the Mott-Smith solution, which differences may be 
significant and which are not. The comparison with the Mott-Smith results is of 
interest because we have found that the qualitative features of the Mott-Smith 
velocity distribution functions are correct and that some of the Mott-Smith 
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moments give surprisingly good accuracy despite the error in the distribution 
function itself.? Also, since many other proposed shock wave models have been 
compared with the Mott-Smith shock, the difference between our Monte Carlo 
solutions of the Boltzmann equation and these models could also be easily 
computed. 

Bird (1965, 1967, 1970a) used a direct simulation technique to obtain shock 
wave solutions. He offered a proof (Bird 1970b) that his procedure can be related 
to the Boltzmann equation and concluded that the results obtained constitute 
a solution of the Boltzmann equation. He computed the density profle in shock 
waves of the gas of elastic spheres for Mach numbers ranging from 1-5 to 30 
(Bird 1965) and obtained the results on temperatures (for Mach numbers of 
1.5, 3 and 10) and velocity distribution functions (for Mach number of 10) based 
on the longitudinal and lateral velocity components (Bird 1967). His more 
accurate calculations given in his recent paper (Bird 1970a) include those of the 
density profile, the reciprocal shock thickness and several higher moments of 
the distribution function. In  addition the velocity distribution function is 
illustrated for M, = 8 by computer display photographs with the molecules 
represented as dots in the two-dimensional velocity space. Higher order moments 
were given for a shock wave of M, = 8 in a gas of inverse twelfth power molecules. 
Comparison has been made with the Mott-Smith and the Navier-Stokes shocks. 
We shall make several comparisons with his 1970 calculations. 

t It is therefore clear that it would not be possible to establish the accuracy of any pro- 
posed solutionf(v,s) solely on the basis of a few moments of the distribution function. 
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2. Measures of departure from equilibrium 
Shock waves are interesting phenomena in rarefied gasdynamics because their 

interiors exhibit large departures from thermal equilibrium. It is therefore 
appropriate to discuss measures of this departure before discussing other aspects 
of shock waves. A monatomic gas is in a state of thermal equilibrium if it has 
a Maxwell-Boltzmann velocity distribution function. One measure, then, of 
the departure of a gas from thermal equilibrium is the deviation of its velocity 
distribution function f (v) (obtained by solution of the Boltzmann equation) from 
the Maxwell-Boltzmann form. We may write the deviation as 

Sf =f-fecl, (1) 
where fea is a Maxwell-Boltzmann function that corresponds to the same values 
of density n, gas velocity u and temperature (or total energy) t .  Since the Krook 
model of the collision integral is proportional to Sf this measure is essentially 
just the Krook collision integral. (The function f is not, in general, a solution of 
the Krook equation.) 

A monatomic gas is also known to be in a state of thermal equilibrium if the 
Boltzmann collision integral vanishes. Thus a second measure of the departure 
from thermal equilibrium is the deviation of the collision integral from zero. 
We write this in fractional form as 

Sy = (a-b f ) /a  = 1 - (bf/a), (2) 
where each of the quantities a, bf and Sy is a function of v. 

In  certain circumstances we are interested in the variation of 8’ and of Sy 
throughout velocity space. Usually, however, we would use more global measures 
of departure from equilibrium, which we obtain by integrating (or summing or 
bounding) S f ,  a - bf, or Sy over the velocity space. Some useful global measures 
are the following: (i) r.m.s. values of Sf, (ii) r.m.s. values of Sy or of related func- 
tions, (iii) maximum values of Sy, (iv) heat flux q and stress T and other properties 
which can be calculated from moments off, (v) moments of a-  bf. Our calcula- 
tions yield values of each of these measures of departure from equilibrium, but 
we shall discuss just three of them, the second one in this section, the fourth one 
in $9 4-6, and the fifth one in $9 3 and 5.  

In our studies of the relative departure from equilibrium we have found it 
convenient to use a certain function of Sy or of the ratio a/bf. This function is 

(3) $(a/bf 1 = (a - bf ) / (a  + bf 1 = @/(2 - SY). 
Its value runs from - 1 (for u/bf = 0) to + 1 (for bf/u = 0);  for a gas in equilibrium 
its value is zero. The global measure of departure from equilibrium that we use 
is the r.m.s. value of $(a/bf) over velocity space, which we call $ab. The values of 
$ab, for different Mach numbers and different positions in the shock waves, gives 
us one measure of the local departure of the gas from thermal equilibrium. 

Figure 2 summarizes the degree of departure from thermal equilibrium at three 
positions in shock waves for Mach numbers ranging from 1-1 to 10. We notice 
first the very large range of values of $ab, from 1.3 x near the hot side 
(6 = 8) of the weakest shock (MI = 1.1) to 0.32 near the cold side (2 = g) of the 
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FIGURE 2. Maximum departure from thermal equilibrium in weak and strong shock waves, 
M ,  = Mach number, a-bf = collision integral, 2 = (fi-nJ/(na-nJ, $ab = r.m.8. value of 
(a - W/(a + bf). 

strongest shock (Nl = 10). These two values of @ correspond, roughly, to values 
of I@( equal to 3 x and 0.5, respectively. Our development of Nordsieck’s 
method of evaluation of the collision integral makes possible solutions? of the Boltz- 
mann equation over this very wide range of non-equilibrium conditions. 

A second characteristic of the curves in figure 2 is noteworthy: for Mach 
numbers larger than about 1.2 the departure from equilibrium, as measured by 
$ab, is larger near the cold side (a = +) than in the centre of the shock (2 = 4). 
Inspection of the isolines of $ab show that the origin of this effect lies in the large 
values of I$\ (or of bf/a) fornegativevaluesof v,, that is, corresponding tothe mole- 
cules which are moving upstream relative to the shock and are being (rapidly) 
produced by the collisions. This non-equilibrium phenomenon, due to ‘diffusion ’ 
of such high-speed molecules backwards or towards the cold side of a shock wave 
or other rarefied gas flow, has provoked the interest of researchers for many years. 

3. Shock thickness and density gradients 
As noted in 0 1, we shall use n rather than x as the independent variable in 

giving a detailed discussion of shock structure. The present section will be 
concerned with the relationship between n and x. Discussion of this relation will 
show the nature of the x -+ n transformation and will also exhibit characteristics 

t In the same sense as defined in 9 1. 
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FIGURE 3. Variation of reciprocal shock thickness with Mach number M I .  +, Boltzmann, 
showing probable error. (a )  Weak shocks; -, Navier-Stokes. ( b )  Strong shocks: -, 
Mott-Smith (uz moment equation). 

of the density profile in the shock waves. A comparison of Boltzmann andNavier- 
Stokes density gradients, for Ml = 1.2, will be given in $ 7 .  The density profiles we 
obtained from the Boltzmann solutions are not symmetrical, but the asymmetry 
isnot easy to see in an nvs. xplot. Also the choice of origin is arbitrary, which makes 
objective comparison among n-x curves from various sources rather difficult. 
Plotting d n l d x  us. 6 (density gradient profile) removes both these difficulties. 

Just one characteristic of the density profile (or of the density gradient profile) 
is usually used to represent shock structure, namely, the reciprocal shock thick- 
ness T,. It is also the characteristic most commonly determined by experiment. 
In defining T, we first introduce the reduced density 

which ranges from 0 on the cold side (n = 1) to 1 on the hot side (n = nz). This 
reduced density gradient &/ax has a maximum value [ d 6 / & ~ ] ~ ~  somewhere 
within the shock, and we definej- 

(The unit of T, here is the upstream mean free path, not the Nordsieck unit of 
length.) 

Our solutions of the Boltzmann equation for shock waves in a gas of elastic 
spheres lead to the values of T, given in figures 3 (a) and (b ) .  We should point out 
that these values of T, were evaluated from the moment of the collision integral 

= (n-n1)/(%-%), (4) 

T, = .J2(dqdx)max.  (5) 

n' = d n / d x  = (a - bf) dv/uz, s 
t To be more specific we might call this the (density) reciprocal shock thicknesses to sug- 

gest that T,, based on the profiles of other gas properties is different from T,, for density. 
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not from the n-x curve. As shown in figure 3(a),  the T, values for low Mach 
numbers are smaller than the corresponding Navier-Stokes results.? Since the 
characteristics of the Navier-Stokes shock can be described by the t-n curve 
and the transport coefficients together with the n-x curve, the interpretation of 
our comparative results for low Mach numbers will be made in § 7, in which the 
results for dtldn and the transport coefficients are presented. However, we do 
want to point out here that the variation of properties with respect to the 
number density n in a Navier-Stokes shock depends on the integral curve, i.e. 
on the t-n relation and thus on the Prandtl number, while the determina- 
tion of the variation with respect to x requires, in addition, the p-t relation. 
Talbot & Sherman (1959) studied T, at low Mach numbers. They measured the 
temperature profile for MI = 1.335-1-713 andobtained density (or velocity) shock 
thicknesses (by using the theoretical t l z  relation) that agree with Navier-Stokes 
shocks. 

For values of MI > 2.5, as shown in figure 3 ( b ) ,  we compare values of T, only 
with the results (using the u2 moment) of Mott-Smith (1951). The Boltzmann 
and Mott-Smith values agree within the 90% confidence limits.$ The fact that 
the Boltzmann T, curve and the Mott-Smith T, curve are not far apart, for 
intermediate values of the Mach number, does not imply that other shock 
characteristics calculated from the Boltzmann and Mott-Smith shocks are also 
in approximate agreement. We shall, in fact, make many other comparisons of 
the two shocks later in this paper. 

The reciprocal shock thickness, of course, shows only one characteristic of the 
density profile.§ It tells us nothing about the physically interesting relaxation 
rates in the wings of the shock nor about the asymmetry of the density gradient 
profiles. The degree of asymmetry of the profiles is exhibited directly in plots 
of our calculated values of dnldx us. 2, see figure 4. The density profiles, if needed, 
can be calculated by numerical integration: 

A 
x(r2) = j (dx/d2) drl. 

&=* 

We remark first that the four curves for each individual Monte Carle sample 
are smooth and of similar shape (i.e. the four curves are ‘nested’). It is therefore 
permissible to make a somewhat more detailed analysis of the shape of the 
(average) density gradient curves than would be justified by the values of E~~ 

shown in figure 4. 
Comparison of ordinates for symmetrically placed values of 6 affords one 

test of asymmetry. On this basis we see that the gradient curves are asymmetric 
for all Mach numbers except those near HI = 2.5. The asymmetry produces 

7 The T,, curve for Navier-Stokes for M ,  = 1-2 is obtained from calculations of the 
algebraic theory (Hicks t Yen 1967). This carve deviates, on the average, by 1.6 yo from 
Wang-Chang’s (1948) result for M ,  = 1-1.2, by 3.8 %from Grad’s (1952) result for M ,  = 1.2, 
and by less than 1 yo from Schmidt’s (1965) numerical results for M ,  = 1.2-2. 

3 The 90 yo confidence limit ego = 3*076,,, where = probable errors which are given 
in most figures. 

3 Grad (1 952) suggested a definition of the shock thickness based on the integral properties 
of the profile. 
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FIGURE 4. Variation of density gradient with reduced density 2 for various values of M,. 
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larger upstream than downstream gradients for N, < 2.5 and smaller up- 
stream than downstream gradients for M, > 2.5. These qualitative results for 
high Mach numbers were anticipated in our algebraic theory (Hicks & Yen 
1967). 

We can connect the asymmetry within the shock to the density relaxation 
rates in the shock wings by generalizing part of the Mott-Smith Ansatz. Thus 
we assume that as x -+ - co 

and as x -+ +co 

The same relation, with a, = a2, follows directly from the linear dependence of 
f on 6 in Mott-Smith’s Ansatx. A simple form for the 2 dependence of dx/dG that 
satisfies both these conditions is 

dxld.2 N UllG, (6)  

(7) dxld2 N a2/( 1 - 2). 

dx a, a2 u,+(a,-a,)G 
- & = T + h =  ?z I-n %(I-$) 

The linear expression a, + (a2 - a,) rZ is thus a correction factor for the symmetric 
function r2( 1 - G). For a2 > a, (slower relaxation per unit path downstream than 
upstream) the gradient curves are skewed to the left, while for u2 < a, (faster 
relaxation downstream than upstream) the gradient curves are skewed to the 
right. By applying these results to figures 4(a)  and (b ) ,  we see qualitatively that 
for M, < 2.5 the upstream relaxation rate must be greater than the downstream 
rate, and that the reverse is true for M, > 2.5. 
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M I  

1.1 
1.2 
1.56 
2.5 
4.0 
6.0 
8.0 
10.0 

fi1 

0.088 
0.176 
0.40 
0.62 
0.70 
0.74 
0.74 
0.74 

6 8  

0.053 
0.105 
0.29 
0.69 
1.00 
1.37 
1.85 
2.3 

AB 
0.044 
0.088 
0.24 
0.49 
0.76 
0.96 
1.08 
1.18 

TABLE 1. Parameters of the density profile in Boltzmann shock waves (elastic spheres). 

The new Ansatz describes our data qualitatively but not quantitatively. To 
represent the Monte Carlo results within the tolerance given by the 90 yo limits 
we modify it again, assuming now that 

The quantity 8 reduces to the asymptotic relaxation rates B, = a71 and 8, = ai l  
in the wings. 

Equation (9) was fitted to the data of figure 4. In the wings (2 < & or 2 2 g) 
the values of [8 - A,,;( 1 - 2)l-l computed from the solution of the Boltzmann 
equation show large deviations above and below the values a, + (a, - a,) 2. In 
the intermediate range (& < 2 < e) the two sides of the equation agree to 
within less than the 90 % confidence limits of the left-hand side. 

The resulting values of 8,, 8, and A, are shown in table 1. The three coefficients 
are each proportional to (M, - 1) for M, 6 1.56. The relaxation rate 8, is propor- 
tional to M, for M, > about 7. The relaxation rate B, seem to approach an asymp- 
totic value of about 0.7 as M, --f 10. The two rates appear to be equal for M, N 2.1, 
in agreement with our earlier qualitative conclusion. 

We emphasize that the values of 8,, 8, and A, in table 1 are tentative. When 
used in (9) they describe our present Monte Carlo results. However, the strong 
evidence for asymmetry and the estimates made of the magnitude of the re- 
laxation rates in the wings will, we hope, stimulate further experimental and 
theoretical studies of the density gradient profiles of shock waves. 

Shock wave theories for low Mach numbers describe 8 by various functions 
of 6. For example, B for Grad’s thirteen-moment shock is a linear function of r2 
with positive coefficients. The fact that the asymmetry for this shock is to the 
right is obvious; however, the relaxation rate in the wings cannot be explicitly 
determined. As the Mach number approaches one, the density profile becomes 
symmetric for all shock wave theories for low Mach numbers; therefore, each 
first-order theory for very low Mach numbers gives a constant value of 8. 

Schmidt (1969) introduced a measure of the asymmetry of the density profile 
which in our notation and independent variable 2 has the following expression: 
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FIGURE 5. Variation of asymmetry ratio Q with Mach number M I .  

0, Boltzmann (elastic spheres) ; V , experiment by Schmidt (argon). 

A where nmax = the reduced number density for maximum density gradient, Com- 
bining (9) and (10) and using the values of 8 given in table 1, we have computed 
the ratio Q for Ml = 2-5 ,4 ,6 ,8  and 10 and compared the values obtained with the 
results obtained from Schmidt’s experiment for argon in this range of Mach 
number. As shown in figure 5, our values of Q are much larger than those of 
Schmidt and the difference increases as HI increases. We should also like to 
point out that our solutions would yield values of Q smaller than 1 for Mach 
numbers lower than about 2.2, indicating that the peak of the density profile 
moves to the cold side of the shock wave. 

4. Shock properties as functions of Mach number 
In $5  4-6 we shall discuss a number of functions derived from our solution of 

the Boltzmann equation for shock waves. In  preparation for this discussion we 
shall now define a number of properties which are derived from the velocity 
distribution function f(v, z). We shall then describe the behaviour, as functions 
of H., of certain of these properties, especially those which possess extrema within 
the shock waves. 

From six moments of the velocity distribution function f we can calculate all 
the ordinary macroscopic properties of the non-equilibrium gas. The six moments 
are n = A1, and d2, -d3, A4, A, and dg, where 

and 

The moments d2, d3 and dZ4 are the invariants. 
Our calculations show that each of five moments off (d6, Ag and three higher 

moments) is nearly a linear function of n, that is, f and its moments are rather 
similar to the Mott-Smith f and its moments, which are exactly linear functions 
of n. The maximum deviations from linearity amount to - 0.59 and 1-8 % for 
the moments dZ, and As, for example, for Nl = 2.5 (Hicks & Smith 1967). The 
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Monte Carlo fluctuations are much smaller than these deviations. Rather than 
showing, in this section, the detailed variation of the moments d6 and A9 
with n, we shall instead discuss the characteristics of the derivatives of various 
related quantities in $8 5 and 6. 

The reduced dimensionless properties derived from some of the six moments 
are as follows. 

Gas velocity u = 4 J n .  (12) 

Lateral temperature t ,  = nA&. (13) 

Stress 7 = #n(t,-t,). (14) 
q = (27rA&4) - 3tx - 2t, - 2nu2. (15) 

Longitudinal heat flux q, = (2nA6/d2)  - 3t, - 2nu2. (16) 

Total heat flux 

In accordance with our definition of units, the units of the dimensional quantities 
(corresponding to the dimensionless quantities u, t, 7 and q) are, respectively, 

To calculate the gas temperature t we need tz, the longitudinal temperature, 
but this is a function of n which can be derived explicitly from the first two 
conservation equations (Yen 1966): 

%I, t,, P1 and u9. 

tx = 2n[ - us+ (A&)]. 

t = &t, + @,, 

(17) 

(18) 

p = nt. (19) 

Knowing n and t we can calculate any thermodynamic property of the equilibrium 
reference gas, such as the entropy S per unit volume, for example: 

The temperature and pressure of the ‘reference gas’ are then given by 

8 = noog (nt-8) - 81. (20) 

The foregoing discussion shows that t ,  occupies a special place in shock theory. 
Unlike t,, its dependence on n cannot be derived from conservation equations 
but must be calculated from a solution f of the Boltzmann equation for the 
shock and subsequent calculation of A&& by numerical integration. However, 
once t,(n) is known, the temperature t and the properties T and q can be computed 
as functions of n from (1 1)-( 18). The variation of t ,  with 6 is represented (in- 
directly) in $ 5  by the variation of d/dG with %. 

There are two other important macroscopic properties of the non-equilibrium 
gas : the two Boltzmann functions 

H = flogfdv, (21) 

(22) 

These are seldom discussed because their calculation requires knowledge of the 
velocity distribution function (which can only be calculated accurately by our 
method €or gases that are far from equilibrium) and because the integrations must 
then be performed by quadrature. 

s 
s G = V ,  f log f dv. and 

7 F L P  53 
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FIGURE 6. Variation of maximum total temperature [tt/(tt)J,, with Mach number M,.  
(See figure 9 for locations of these maxima.) 0, Boltzmann (maximum probable error 
< 0.75%); A, Bird (v = 12). 

The Boltzmann theorem for a steady-state flow, as in a shock wave, says that 
B must decrease monotonically through the shock. We shall make a sensitive test 
of the conformity of our results to this theorem in 3 5. We shall see shortly that H 
(and the related function h = H/n) also possess certain other interesting properties 
in shock waves. 

With these preliminaries out of the way we shall now discuss four properties, 
each a functional off and each exhibiting a maximum within the shock waves. 

It was noticed many years ago (by Nordsieck in 1959, by Hicks in 1963, see 
Yen (1966)) that the longitudinal temperature t,, as a function of n in the shock 
(equation (17)), possesses a maximum for M: > 1.8. According to the results of 
our Boltzmann calculations the lateral temperature t ,  does not show a maximum 
for any Mach number or position in the shock. The existence of a maximum of 
t, thus ensures that for H: > 1.8 the temperatures are not in equlibrium. 

(23) 
The total temperature 

tt = t + g,(&&)2. 

Its variation thus depends on two moments, Al and A9. We have found that it 
has a maximum for all the Mach numbers studied. As is shown in figure 6, this 
maximum is less than 1.085, and the maximum tt obtained by Bird (1970a) for 
MI = 8 and a gas obeying the twelfth-power law (force N r-v, where v = 12, 
r = distance of colliding molecules) is larger than our calculation for elastic 
spheres at this Mach number. 

For weak shocks, the Boltzmann function per unit volume ( H )  and the en- 
tropy per unit volume (8) are nearly equal. For strong shocks, the difference 
between the two functions is thus a global measure of departure from thermal 
equilibrium (see also 3 2). At the upstream and downstream boundaries the two 
functions are exactly equal, so that :he difference must possess an extremum 
inside the shock. The difference (I? - 8) is plotted in figure 7 for the mid-shock 
position to show its general behaviour as a function of Nl. 

It was also noticed some time ago (Morduchow & Libby 1962) that the value 
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reduced entropy at  mid-shock position (6 = 3) with Mach number M,. 0, Boltzmann, 
indicating probable error. 
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FIGURE 8. Comparison of maximum of reduced Boltzmann function per moleoule, L, with 
the Navier-Stokes value of maximum entropy per unit mass, $-, as a function of Mach 
number M,.  - , $- for Navier-Stokes shock; 0, h,,, for Boltzmann shock (maximum 
probable error < 0.6 yo). 

of s, the entropy per molecule, calculated from the Navier-Stokes description of 
a shock wave possesses a maximum within the shock wave for all Mach numbers. 
The maximum is caused by the change of sign of the (large) heat-conduction 
term d(kdt/dx)/dx,  which dominates the (smaller) positive viscous-dissipation 
term +pduldx (Morduchow & Libby 1962). It is therefore of interest to examine 
the behaviour of the maximum of the corresponding Boltzmann function 
hmax = (H/n)max as a function of the Mach number MI. We find that it has the 
same qualitative behaviour as Smax = (S/n),ax of the Navier-Stokes shock, 8s 
shown in figure 8. 

We have now discussed many of the functions that possess maxima within the 
shock wave: n' in § 3 and t,, t,, i? - 8 and ff in the present section. In  figure 9 we 
compare the positions of the maxima of four of these fmctions, n', t,, t,, and h, for 

7-2 
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FIGURE 9. Variation of location of the maximum with Mach number M ,  for the following: 
longitudinal temperature t,, Boltzmann function h, density gradient n', total temperature t , ,  
maximum stress r and maximum heat flux q. - . . - , t,; - . - , h; - - - , n'; - . .. - , t , ;  
-, 7 ;  - -.- - , q. Results of Bird (v = 12): a, maximum stress; n, maximum heat 
flux; 0, maximum total temperature. 

different Mach numbers. We shall discuss the stress 7 and the heat flux q in § 6 
but also show in this figure the positions of the maxima of r and q. (The positions 
of the maxima for r ,  q, and t, obtained by Bird ( 1 9 7 0 4  for MI = 8 and v = 12 are 
also included for comparison.) 

It is clear that no one position (value of 6 )  within shock waves has a special 
significance for all shock properties and all Mach numbers. 

5. Profles of the gradients of shock properties 
In  this section we shall look at the detailed variations, for each Mach number, 

of several shock characteristics as functions of the independent variable n. The 
functions are the Boltzmann flux, defined in (22), the temperature t and the 
total temperature tt. In  each case we shall study the n derivatives of the function. 

Since we evaluate the Boltzmann collision integrals, the gradient A; of a 
moment of the velocity distribution with respect to x can be evaluated from the 
corresponding moment of the collision integral as follows: 

dk?; = @D,(a- bf) dV/v5, (24) 

dAD, ldn = dk?;pY;, (25) 

s 
where a - bf = collision integral. It is convenient, in our study, to look at  the 
gradient with respect to n: 
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Reduced number density, 6 
FIGURE 10. Variation of the gradient dG/di? of the reduced Boltzmann flux with the reduced 
density 6 for various values of M I .  

- --. .__ -.-.- -_- -  
MI 1.56 2.50 6.00 10.00 
Average probable error 0.103 0.0156 0.0753 0.0396 

where A; = n' = density gradient = /(a - b f )  dv/vz. The gradient of any property 
could be obtained from those of its related moments. For example, (12), (13), (17) 
and (18) are used to evaluate the gradient of temperature, &/an, as follows: 

dt/dn = $.([ - A3/CJl + 2u2 - C J & q  + A;/A;}/Aq. (26) 

dG/dx < 0 (27) 

According to the Boltzmann theorem for steady flow of a gas 

throughout the gas. Since dn/& is positive throughout each shock wave (see 9 3) 
the theorem can also be stated in the form 

dG/dn < 0. (28) 

One test of the physical validity of our solutions of the Boltzmann equation is 
the following question: Do the solutions satisfy the Boltzmann theorem? The 
answer, for our solutions, is yes for the complete range of Mach number from 1~1, 
where the largest value of d log, Gldn is about to a Mach number of 10, where 
this derivative is as large as 0.306. The rather similar Mott-Smith velocity dis- 
tribution functions also satisfy the theorem. (This has not been shown analytically 
but is a result of our numerical calculations.) Agreement with the Boltzmann 
theorem is clearly one criterion that any supposed solution of the Boltzmann 
equation should satisfy. 

The detailed variation of dG/dn with n is conveniently represented in terms of 
the reduced quantity dOld2, which is plotted us. G for four Mach numbers in 
figure 10. Notice that d6/& is almost independent of Ml at the mid-shock posi- 
tion for N .  greater than about two. 

The derivative dt/dn is a function worth studying for several reasons. First, 
the Navier-Stokes treatment of the shock wave is based on this function. In 
particular, the value of this derivative fixes the quantitative nature of the 
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of reduced temperature with the reduced density FIGURE 11. Variation of the gradient 
fi for various values of MI. 

Navier-S t okes 
Boltzmann asymptotic values 

0 0  A - --- -.-.- 
1.1 1.2 1.56 1-1 1.2 1.56 

2.5 6.0 10.0 2.5 10.0 6.0 
(a)  { ZGerage probable error 0.00259 0-00642 0.00396 - - - 

( b )  {?:erage probable error 0.0183 0.0227 0.0187 - - - 

singularities at each boundary of the Navier-Stokes shock. Second, this func- 
tion enters explicitly into the formula for the (effective) Prandtl number which 
we shall discuss in 0 7. We shall therefore compare the values of dtldn obtained 
from the Navier-Stokes and from our own solutions of the Boltzmann equation. 

The values of d&%, the reduced derivative, are plotted us. rZ for six Mach 
numbers in figure 11. The Navier-Stokes values of the derivative are marked on 
the plots at 6 = 0 and 1 and agree well with the Boltzmann values for low Mach 
numbers. 

The derivative dt/dn is related to the number density and the derivative of the 
total temperature tt by the equation 

dtldn = tn(diln3) + dtJdn. (29) 

Since, as has been discussed by Bagnoff & Nathenson (1970), for example, the 
change in total temperature is rather small in a shock wave, we would then 
expect dtldn t o  be a rather steep function ofn,  varying somewhat like the inverse 
cube of n, as is illustrated in figure 11 (a). The values of d&/d% are much smaller 
than d%/dA, but these small values represent the part of the variation of df /d2  
with a which is not predictable a priori from the term 4?r&/5n3 and which can 
only be calculated at present from solutions of the nonlinear Boltzmann equation. 
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FIGURE 12. Variation of stress 7/33 heat flux q, and heat flux associated with longitudinal 
motion qz with reduced density n for M ,  = 4. --, Mott-Smith; - , Boltzmann. 
Average probable error = 0.0612, 0.109 and 0.0559 for 7/p1, q and qz respectively. 

l L  

Note also, for strong shocks, that near the hot side dt /dn  is much less than either 
Idtx/dnl or dt,ldn, i.e. there is a delicate balance between the large positive value 
of dt,ldn and the large negative value of dtx/dn. 

6. Transport properties of shock waves 
Three transport properties are basic to our discussion. These properties are 7, 

a measure of the total stress (or momentum flux), q, a reduced heat flux and q2, 
the part of the heat flux associated with the longitudinal random motion of the 
molecules. These properties are calculated from the formulae given in $4. As 
seen from (11)-(18) 7 and q as functions of number density can be derived 
from one non-invariant moment off, namely dB (see $a), or from the lateral 
temperature t,, together with t, and u, which are known functions of the invariant 
moments and therefore of MI and of n. To calculate qz an additional moment 
must be known, namely A6. 

We shall look at the variation of the transport properties with in  a shock wave 
for XI = 4. (The position of maximum 7 and maximum p were shown in figure 9.) 
Figure 12 shows the variation of the three fluxes T, q and qz for the Boltzmann 
and the Mott-Smith shocks. At the upstream and downstream boundaries of 
the shock the Monte Carlo values of the three fluxes are consistent with the zero 
values expected there. As shown in the figure, the three profiles of the Boltzmann 
shock are similar to those of the Mott-Smith shock; however, the differences 
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FIGURE 13. Variation of viscosity-temperature ratio prel = (p/pl) / ( t / t l )*  with h for a shock 
wave of M, = 4. - -, Mott-Smith; -, Boltzmann (average probable error = 0.0797). 

are significant, especially near the upstream boundary. The maximum percentage 
differences are 9.8 % (at r2. = 0.125), 21 yo (at 2 = 0.25) and 6.5 % (at r2. = 0.1875) 
for r ,  q, and qz respectively. 

In  fluid dynamics one is interested in the relation between each flux and the 
corresponding gradient. In  Navier-Stokes fluids the relation is described by the 
transport coefficients p and k ,  defined by 

p = $[T/ (dU/dX)] ,  k = q/(dt/dX). (30) 

p = p1(t/t1)'7 = kl(t / t l) t .  (31) 

For a gas of elastic spheres the temperature dependence of the coefficients is 
given by 

In the kinetic theory of a non-equilibrium gas, like that in the interior of a shock 
wave, it is convenient to use the same definition of transport coefficients but 
to normalize them by dividing by t i  (since we are considering elastic sphere 
molecules) and by the upstream value of the coefficient. Thus in our discussion 

(32) 
we shall use 

f ie1  = (~ / ,d / ( t / t i )&,  kre1= ( k / k i ) / ( W -  
For a Chapman-Enskog gas (ie. for small values of Ml - 1) and krel should 
be equal to one. 

Figure 13 shows the variation of *elin a shock wave for M, = 4. The values of 
f i e 1  are larger near the boundaries than in the interior of the shock wave and 
therefore depart quite significantly from the values expected for near-equilibrium 
flow. (This departure is much larger for near the downstream boundary.) 



The internal structure qf shock waves 

I 1.0 I I I I I I 

t i 
105 

0.2 ‘ I I I I I 

0 1 2 3 

Local Mach number, M 

FIGURE 14. Variation of heat flux ratio q2/q with local Mach number M for different values 
of MI. - , theory of Baganoff & Nathenson. Boltzmann: V, MI = 1.2; 0, MI = 2.5; 
0, M I  = 4.0; A, M ,  = 6.0; 0, M I  = 10.0. 

The ratio qz/q is also of interest. As pointed out by Baganoff & Nathenson 
(1970) the Chapman-Enskog approximation yields a constant value of qz/q = 0.6. 
Baganoff & Nathenson’s (1970) model gives q,Jq = 15M2/(7 + 182M)2, where 
2M = local Mach number. Our solutions of the Boltzmann equation give the 
results shown in figure 14, which are in good agreement with Baganoff’s model. 
Note that even for low Mach numbers the ratio qx/q is not a constant as predicted 
by Chapman-Enskog approximation, but is a function of the local Mach number. 
We have found that the Mott-Smith values of qx/q do not correlate too well with 
the local Mach number and are much lower than Baganoff & Nathenson’s 
curve for strong shocks. 

7. Comparison with Navier-Stokes shock at a low Mach number 

In  9 3 we found that the Boltzmann results for T, are smaller than the Navier- 
Stokes values for low Mach numbers. In  order to make a more complete com- 
parison with the Navier-Stokes shock we shall look at four additional properties 
in detail for MI = 1.2: the density gradient dnldx, the profle of temperature 
t vs. density n, the Prandtl number Pr as a function of n, and the viscosity co- 
efficient p as a function of n. (We define Pr = +(c&k).) 

The relevance to the weak shocks of the four properties mentioned above 
may be seen by reviewing here how the Navier-Stokes shock solution is usually 
obtained. The first step is to obtain the integral curve for constant Pr, yielding 
either the t-n or the t-v profile. As indicated in Q 4, several properties including 
temperature are functions of 

( M I  = 1.2) 
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FIGURE 16. Comparison of density gradients n’ of Boltzmann with Navier-Stokes results 
for M I  = 1.2. -, Navier-Stokes; 0, Boltzmmn, indicating probable error. 

therefore the t-n relation also determines many other shock properties as func- 
tions of the density n. The second step is to obtain the density profile, the 
density n vs. the distance x ,  by using a viscosity-temperature (p-t) relation 
consistent with the collision law of a gas. We see, therefore, that a Navier-Stokes 
shock is completely determined by four functions: t(n), Pr(n), p(n)  and n(x).  

In our study of the Boltzmann and Navier-Stokes shock for H, = 1.2 we 
need (i) to look at the difference in dn/dx for the two shocks, (ii) to compare the 
dt/dn profiles, (iii) to examine the variation of Pr in the Boltzmann shock and 
(iv) to see if the viscosity coefficient in the Boltzmann shock is proportional to 
the square root of temperature, a relation derived from the linearized theory for 
elastic-sphere gases. 

Figure 15 shows the variation of reduced density gradient dn/& ZIS. reduced 
density 2. For 12 > 0.2, the Boltzmann values of dn/dx are significantly lower 
than the Navier-Stokes results. The value of T, for HI = 1.2 shown in figure 3 (a) 
is proportional to the maximum value of dn/dx in this figure. 

The results for the reduced temperature gradient &/a2 are compared in 
figure 16, which shows good agreement for the two shocks. This agreement implies 
good agreement also for the variation of the properties such as t ,  t,, r and q 
(which are functions of d9) as functions of the density n. Figure 17 shows the 
variation of Pr vs. 6 in the Boltzmann shock. The significant variation of Pr, 
except near the cold and hot sides, is less than 10 %. Since the Navier-Stokes 
dt/dn was obtained on the basis of constant Pr of 8 (equivalent to c,p/k = #), the 
Prandtl numbers within the Boltzmann shocks are also in accord with that of 
the Navier-Stokes shock. 

The ratio prel= (,u/pl)/(t/tl)* is equal to one for a gas of elastic spheres. We 
have studied this ratio for one shock ( M ,  = 4, see $6) .  The variation of this 
ratio for an N, = 1.2 shock is given in figure 18. We note that this ratio is 
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FIG- 17. Variation of Prandtl number Pr with reduced density h for MI = 1.2. 

0, Boltzmann (average probable error = 0.0272). 

definitely greater than unity on the downstream half of the shock, with a maxi- 
mum departure of 40 %. The fact that the ratio f i e l  is greater than one for the 
Boltzmann shock is in accord with the fact that the Boltzmann values of dn/dx 
and T, are smaller than the Navier-Stokes values for HI = 1-2 and other low 
Mach numbers. 
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Reduced number density, h 

FIGURE 18. Variation of the viscosity-temperature ratio pre, = ( ,u/pl) / ( t / t l )*  with reduced 
density h for MI = 1.2 .0 ,  probable error. 

8. The velocity distribution function 
In  the previous sections we have discussed the dependence on Mach number 

and shock position of many moments off, of the velocity distribution function, 
and of other functions derived from f. In  this section we shall describe the 
behaviour off as a function of position in velocity space for one Mach number 
(HI = 4) and at  several positions in the shock. 

The qualitative nature of the distribution function was monitored by a com- 
puter graphical display system. The layout of the velocity space for the display 
of our velocity-dependent functions and a representative distribution function f 
at the mid-shock position (2 = i) for Nl = 4 are shown in figure 19 (plate 1). 
We observe the bimodal characteristics of the distribution function. 

In  making quantitative studies off it is convenient to compare with the Mott- 
Smith values. Let us define 

SfM = f B  - fMS ,  

each term in the equation, of course, being calculated for the same value of v 
and 2, and for the same Mach number (fs and fMs being Boltzmann and Mott- 
Smith values respectively). 

The nature of the variation of 8fM across velocity space for the mid-shock 
position (2 = 8 )  is such that there are regions in which dfM is positive and other 
regions in which SfM is negative. These regions are well defined at all positions 
within the shock but their shape and size vary with position. These facts suggest 
that the errors of the Mott-Smith function for this Mach number are indeed 
significant in the shock. 

This opinion is confirmed when we look at values of SfM for individual bins 
in comparison with the estimates we have made of ego f for the same bins. We 
find that, for about 40 O,(, of the bins, at most shock positions 8fM is greater than 
3s9, f, that is, the 8fM values as large as those observed for these bins would occur 
by chance only once in 100 or more trials. Near the cold boundary these highly 
significant values off occur only for about 20 yo of the bins, so that here the 
Mott-Smith Ansatz gives fewer large deviations from the solution of the Boltz- 

(33) 
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mann equation than elsewhere.? Nevertheless, the largest individual deviations 
also occur near the cold side of the shock. 

The r.m.5. values of 8fM and ego f are each approximately constant across the 
shock. The r.m.8. value of SfM for all stations (1.34 x lop2) is 1.7 times larger 
than the average values of eQOf (0.79 x 10-2) and is 6.3 times smaller than the 
r.m.8. value off throughout the shock. 

A qualitative summary of the characteristics of the Boltzmann f(v, n) would 
be useful in guiding the future development of analytical or analytical-numerical 
methods of describing the properties of shock waves. To do this we shall again 
use SfM, the departure off from the corresponding Mott-Smith function, because 
the fractional deviation 8fM/f is generally small, though it may be large in a 
few local regions in velocity space and in the shock. What are the qualitative 
properties of SfM obtained from our solution of the Boltzmann equation? 

(i) SfM = 0 at  the upstream and downstream boundaries of the shocks. 
(ii) Sn = I S f M d v  must be 0 because the values of f B  and f M s  in (33) are cal- 

culated for the same value of n. Therefore, SfM must have both positive and 
negative values for each position in the shock. 

(Z) The three conserved moments of 8fM, like those off and of f M S ,  must be 
constant across the shock. 

(iv) 6fM cannot be represented as a product of a function of .n and a function 
of v because the shape of the isolines of SfM changes with n, i.e., with position 
in the shock. 

(v) In  particular, SfM is not simply proportional to 2( 1 - &), because analysis 
of three of the non-conserved moments off show that it cannot be represented 
by quadratic functions of n. 

Bird (1970a) has studied computer display representation of the distribution 
function for N, = 8 and has also found that the general behaviour gives quali- 
tative support of the bimodal assumption of Mott-Smith but is not in agreement 
with the Mott-Smith solution in detail. 

Muntz & Harnett (1970) have recently made two experimental measurements 
of certain distribution functions for Nl = 1.59 : 

P(v,) = f dv,dv, and P(vy) = fdv,dv,. 

They found that P(v,) deviated significantly from that of the corresponding 
Chapman-Enskog first iterate. In  order to find whether similar deviations exist 
between our Boltzmann results and those of Chapman-Enskog f i s t  iterate, we 
have made a similar comparison for N, = 1.59 for elastic spheres. The results 
for the half width of P(vJ are in excellent agreement with their findings (Holtz, 
Muntz & Yen 1971). 

We should like to point out that Muntz & Harnett’s results are for helium 
with a different collision cross-section from that of the elastic spheres we consider. 
We have computed the Chapman-Enskog half width for helium (with p - 
for H .  = 1.59 and have found no discernible difference, when the results are 

7 Essentially the same result was found earlier for the M ,  = 2.5 shock (Hioka & Smith 
1967). 

s s 
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FIGURE 20. Isolines of the function v,(u - bf) at the mid-shock position (A = +) for MI = 4. 
w,(a - bf) is the function calculated directly by Nordsieck's Monte Carlo method. Numerical 
values of v,(u-bf) in arbitrary units: A,  8000; B, 5000; C,  3500; D, 2000; E,  800; P, 350; 
G, 150; H ,  80. 

plotted vs. 2, with that of the elastic spheres. We believe, therefore, that the 
effect of using the actual helium cross-section on the Monte Carlo result is, 
for this Mach number, probably also small. However, we are planning to in- 
corporate in our computer program other differential collision cross-sections than 
that of the elastic spheres and to  study their effects. 

Bird computed F(vx) and F(v,) for the shock of Ml = 10 (Bird 1967). 

9. The Boltzmann collision integral (Hl = 4) 

As pointed out in the introduction, it is Nordsieck's method of evaluation of 
the (nonlinear) Boltzmann collision integral that has made possible the solution 
of the Boltzmann equation for strong shock waves and other far-from-equilibrium 
situations. Since the nature of the Boltzmann collision integral, as calculated by 
Nordsieck's Monte Carlo method from a solution of the Boltzmann equation for 
the shock wave as well as the heat-transfer problems, and the comparison with 
the approximations to it associated with the names of Mott-Smith and Krook 
are discussed in detail in a separate paper (Hicks & Yen 1971), we shall describe 
here briefly only some of its important characteristics for MI = 4 and rZ = i. 

In figure 20 are shown the isolines of the functions v,(a-bf) (the function 
calculated directly by our numerical solution of the Boltzmann equation) at 
the mid-shock position (6 = 4) for Hl = 4. The negative values of the function 
for large positive v, correspond to (a  - bf )/w, = df/dx < 0 and to the scattering 
loss of molecules with high forward velocity, like those characteristic of the cold 
side of the shock. The negative values for v, < 0 (molecules moving in the up- 
stream direction) correspond to df/dx > 0. The collision integral should vanish 
on the line vx = 0 if df/dx is to be finite there. This requirement is a strong test 
of the reliability of numerical solutions of the Boltzmann equation or of approxi- 
mations like those of Mott-Smith and Krook. Except in the case of a few velocity 
bins the values of (a  - b f )  obtained by Monte Carlo solution of the Boltzmann eqmtion 
satisfy this criterion well. 
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theory of gases. This work was supported in part by the Joint Services Electronics 
Program (Contract no. DUB-07-67-(2-0199) and the Office of Naval Research 
(Contract no. N00014-67-A-0305-0001). 

R E F E R E N C E S  

BAUANOFF, D. & NATBENSON, M. 1970 Phys. Fluids, 13, 596. 
BIRD, G. A. 1965 Proc. 4th Int. Symp. on Rarefied Gaa Dynamics, 1, 216. 
BIRD, G. A. 1967 J. Fluid Mech. 30, 479. 
BIRD, G. A. 1970a PhoJs. FZuids, 13, 1172. 
BIRD, G. A. 1970b Phya. Fluids, 13, 2676. 
GRAD, H. 1952 Comm. Pure Appl. Math. 5, 257. 
HICKS, B. L. 1965 C.S.L. Rep. University of Illinois, R-236. 
HICKS, B .  L. & S M I ~ ,  M. A. 1967 C.S.L. Rep. University of Illin&, R-347. 
HICKS, B. L. & SMITH, M. A. 1968 J .  C m p .  Phys. 3, 58. 
HICKS, B. L. & YEN, S. M. 1967 Phys. Fluids, 10, 458. 
HICKS, B.  L. & YEN, S. M. 1969 Proc. 6th Int. S y q .  on RareJed Gas Dynamics, 1,313. 
HICKS, B. L. & YEN, S .  M. 1971 Proc. 7th Int. Symp. on Rarefied Gw Dynanbics (to be 

HICKS, B. L., YEN, S. M. & REILLY, B. 1969 CSL Rep. University of Illinois, R-412. 
HOLTZ, T., MWTZ, E.  P. & YEN, S. M. 1971 Phys. FZuids, 14, 545. 
MORDTJCEOW, M. & LIBBY, P. A. 

no. 749. 
MOTT-SMITH, H. M. 1951 Phy8. Rev. 82, 885. 
MUNTZ, E. P. & HARNETT, L. N. 1970 Phys. Fluids, 12, 2027. 
NORDSIECK, A. & HICKS, B. L. 1967 Proc. 5th I d .  S y q .  on Rarefied Gaa Dynamics, 1 

SCHMIDT, B. 1969 J .  Fluid Mech. 39, 361. 
SCHMIDT, H. J. 1965 M.S. thesis, University of Illinois. 
TALBOT, L. & SHERMAN, F. S. 1959 N.A.S.A. Memo. 12-14-58W. 
WANG-CHANG, C. 8. 1948 Univers& of Michigan Rep. APL/JHO CM 504. 
YEN, S.M. 1966 Phys. Fluids, 9, 1417. 
YEN, S. M. 1971 Proc. 7th In?. Symp. on RareJed aaa Dynamics (to be published). 
YEN, S. M. & HICKS, B. L. 1967a CSL Rep. University of Illinois, R-350. 
YEN, S.  M. & HICKS, B. L. 1967 b Proc. 5th Int. Symp. on Rarefied Gas Dynamics, 1, 785. 
YEN, 5. M. & SCHMIDT, H. J. 1969 Proc. 6th Int. Symp. on Rarefied Gaa Dynamics, 1,205. 

published). 

1962 Pibal Rep. Brooklyn Institute of Technology, 

675. 



Journal of Fluid Mechanics, Vol. 53, part 1 Plate 1 

Front view 

Function displayed 

4 

FIGURE 19. Display of distribution function f at mid-shock position (h = 4) for M ,  = 4. 
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